class documentation

Undocumented

Method __dir__ Undocumented
Method __init__ Undocumented
Method effective_storage_bucket_name.setter Undocumented
Method experiments_count.setter Undocumented
Method mlflow_version.setter Undocumented
Method phase.setter Undocumented
Method state.setter Undocumented
Method tracking_endpoint.setter Undocumented
Method tracking_endpoints.setter Undocumented
Constant __PB2_DESCRIPTOR__ Undocumented
Constant __PY_TO_PB2__ Undocumented
Class Variable __mask_functions__ Undocumented
Property effective_storage_bucket_name Name of the Nebius S3 bucket for MLflow artifacts.
Property experiments_count Count of experiments in the MLflow cluster
Property mlflow_version MLflow version
Property phase Current phase of the cluster.
Property state State reflects substatus of the phase to define whether it's healthy or not.
Property tracking_endpoint Tracking endpoint url. Will be removed soon in favor of private_tracking_endpoint and public_tracking_endpoint.
Property tracking_endpoints Public and private tracking endpoints

Inherited from Message:

Class Method get_descriptor Undocumented
Class Method is_credentials Undocumented
Class Method is_sensitive Undocumented
Method __repr__ Undocumented
Method check_presence Undocumented
Method get_full_update_reset_mask Undocumented
Method get_mask Undocumented
Method is_default Undocumented
Method set_mask Undocumented
Method which_field_in_oneof Undocumented
Class Variable __PB2_CLASS__ Undocumented
Instance Variable __pb2_message__ Undocumented
Method _clear_field Undocumented
Method _get_field Undocumented
Method _set_field Undocumented
Class Variable __credentials_fields Undocumented
Class Variable __default Undocumented
Class Variable __sensitive_fields Undocumented
Instance Variable __recorded_reset_mask Undocumented
def __dir__(self) -> abc.Iterable[builtins.str]: (source)

Undocumented

def __init__(self, initial_message: message_1.Message | None = None, *, phase: v1alpha1_1.ClusterStatus.Phase | cluster_pb2_1.ClusterStatus.Phase | None | unset.UnsetType = unset.Unset, state: v1alpha1_1.ClusterStatus.State | cluster_pb2_1.ClusterStatus.State | None | unset.UnsetType = unset.Unset, tracking_endpoint: builtins.str | None | unset.UnsetType = unset.Unset, effective_storage_bucket_name: builtins.str | None | unset.UnsetType = unset.Unset, experiments_count: builtins.int | None | unset.UnsetType = unset.Unset, mlflow_version: builtins.str | None | unset.UnsetType = unset.Unset, tracking_endpoints: Endpoints | cluster_pb2.Endpoints | None | unset.UnsetType = unset.Unset): (source)
@effective_storage_bucket_name.setter
def effective_storage_bucket_name(self, value: builtins.str | None): (source)

Undocumented

@experiments_count.setter
def experiments_count(self, value: builtins.int | None): (source)

Undocumented

@mlflow_version.setter
def mlflow_version(self, value: builtins.str | None): (source)

Undocumented

@phase.setter
def phase(self, value: v1alpha1_1.ClusterStatus.Phase | cluster_pb2_1.ClusterStatus.Phase | None): (source)

Undocumented

@state.setter
def state(self, value: v1alpha1_1.ClusterStatus.State | cluster_pb2_1.ClusterStatus.State | None): (source)

Undocumented

@tracking_endpoint.setter
def tracking_endpoint(self, value: builtins.str | None): (source)

Undocumented

@tracking_endpoints.setter
def tracking_endpoints(self, value: Endpoints | cluster_pb2.Endpoints | None): (source)

Undocumented

__PB2_DESCRIPTOR__ = (source)

Undocumented

Value
descriptor.DescriptorWrap[descriptor_1.Descriptor]('.nebius.msp.mlflow.v1alpha1.
MlflowClusterStatus',
                                                   cluster_pb2.DESCRIPTOR,
                                                   descriptor_1.Descriptor)
__PY_TO_PB2__: builtins.dict[builtins.str, builtins.str] = (source)

Undocumented

Value
{'phase': 'phase',
 'state': 'state',
 'tracking_endpoint': 'tracking_endpoint',
 'effective_storage_bucket_name': 'effective_storage_bucket_name',
 'experiments_count': 'experiments_count',
 'mlflow_version': 'mlflow_version',
 'tracking_endpoints': 'tracking_endpoints'}
@builtins.property
effective_storage_bucket_name: builtins.str = (source)

Name of the Nebius S3 bucket for MLflow artifacts.

@builtins.property
experiments_count: builtins.int = (source)

Count of experiments in the MLflow cluster

@builtins.property
mlflow_version: builtins.str = (source)

MLflow version

Current phase of the cluster.

State reflects substatus of the phase to define whether it's healthy or not.

@builtins.property
tracking_endpoint: builtins.str = (source)

Tracking endpoint url. Will be removed soon in favor of private_tracking_endpoint and public_tracking_endpoint.

@builtins.property
tracking_endpoints: Endpoints = (source)

Public and private tracking endpoints